РП по физике 10-А, 10-Б, 10-К

Рабочая программа по физике для 10 класса составлена на основе: авторской программы (авторы: В.С. Данюшков, О.В. Коршунова),
составленной на основе программы автора Г.Я. Мякишева (Программы общеобразовательных учреждений. Физика. 10-11 классы / П.Г. Саенко, В.С.
Данюшенков, О.В. Коршунова и др. – М.: Просвещение, 2009.
Учебник: Г.Я. Мякишев, Б.Б. Буховцев, Н.Н.Сотский. Физика. 10 класс: учебник для общеобразовательных организаций с приложением на
электронном носителе: базовый уровень /- М.: Просвещение, 2014.- 416 с.
Планируемые результаты освоения учебного предмета:
Личностные результаты:
- управлять своей познавательной деятельностью;
- готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни; сознательное отношение к непрерывному
образованию как условию успешной профессиональной и общественной деятельности;
- умение сотрудничать со сверстниками, детьми младшего возраста, взрослыми в образовательной, учебно-исследовательской, проектной и других
видах деятельности;
- сформировать мировоззрения, соответствующее современному уровню развития науки; осознание значимости науки, владение достоверной
информацией о передовых достижениях и открытиях мировой и отечественной науки; заинтересованность в научных знаниях об устройстве мира и
общества; готовность к научно-техническому творчеству
- чувство гордости за российскую физическую науку, гуманизм;
- положительное отношение к труду, целеустремленность;
- экологическая культура, бережное отношение к родной земле, природным богатствам России и мира, понимание ответственности за состояние
природных ресурсов и их разумное использование.
Метапредметные результаты:
Регулятивные УУД:
- самостоятельно определять цели, ставить и формулировать собственные задачи в образовательной деятельности и жизненных ситуациях;
- оценивать ресурсы, в том числе время и другие нематериальные ресурсы, необходимые для достижения поставленной ранее цели;
- сопоставлять имеющиеся возможности и необходимые для достижения цели ресурсы;
- определять несколько путей достижения поставленной цели;
- задавать параметры и критерии, по которым можно определить, что цель достигнута;
- сопоставлять полученный результат деятельности с поставленной заранее целью;
- оценивать последствия достижения поставленной цели в деятельности, собственной жизни и жизни окружающих людей.
Познавательные УУД:
- критически оценивать и интерпретировать информацию с разных позиций;
- распознавать и фиксировать противоречия в информационных источниках;
2

- использовать различные модельно-схематические средства для представления выявленных в информационных источниках противоречий;
- осуществлять развернутый информационный поиск и ставить не его основе новые (учебные и познавательные) задачи;
- искать и находить обобщенные способы решения задачи;
- приводить критические аргументы, как в отношении собственного суждения, так и в отношении действий и суждений другого человека;
- анализировать и преобразовывать проблемно-противоречивые ситуации;
- выходить за рамки учебного предмета и осуществлять целенаправленный поиск возможности широкого переноса средств и способов действия;
- выстраивать индивидуальную образовательную траекторию, учитывая ограничения со стороны других участников и ресурсные отношения;
- менять и удерживать разные позиции в познавательной деятельности (быть учеником и учителем; формулировать образовательный запрос и
выполнять консультативные функции самостоятельно; ставить проблему и работать над ее решением; управлять совместной познавательной
деятельностью и подчиняться).
Коммуникативные УУД:
- осуществлять деловую коммуникацию, как со сверстниками, так и с взрослыми (как внутри образовательной организации, так и за ее пределами);
- при осуществлении групповой работы быть как руководителем, так и членом проектной команды в разных ролях (генератором идей, критиком,
исполнителем, презентующим и т.д.);
- развернуто, логично и точно излагать свою точку зрения с использование адекватных (устных и письменных) языковых средств;
- распознавать конфликтные ситуации и предотвращать конфликты до их активной фазы;
- согласовывать позиции членов команды в процессе работы над общим продуктом/решением;
- представлять публично результаты индивидуальной и групповой деятельности, как перед знакомой, так и перед незнакомой аудиторией;
- подбирать партнеров для деловой коммуникации, исходя из соображений результативности взаимодействия, а не личных симпатий;
- воспринимать критические замечания как ресурс собственного развития;
- точно и емко формулировать как критические, так и одобрительные замечания в адрес других людей в рамках деловой и образовательной
коммуникации, избегая при этом личностных оценочных суждений.
Предметные результаты:
Кинематика.
Учащиеся научатся:
- давать определения понятиям: механическое движение, материальная точка, тело отсчета, система координат, равномерное прямолинейное
движение, равноускоренное и равнозамедленное движение, равнопеременное движение, периодическое (вращательное) движение;
- использовать для описания механического движения кинематические величины: радиус-вектор, перемещение, путь, средняя скорость, мгновенная и
относительная скорость, мгновенное и центростремительное ускорение, период, частота;
- называть основные понятия кинематики;
- воспроизводить опыты Галилея для изучения свободного падения тел, описывать эксперименты по измерению ускорения свободного падения;
- делать выводы об особенностях свободного падения тел в вакууме и в воздухе;
3

- применять полученные знания в решении задач
Учащиеся получит возможность научиться:

- понимать и объяснять целостность физической теории, различать границы ее применимости и место в ряду других физических теорий;

- владеть приемами построения теоретических доказательств, а также прогнозирования особенностей протекания физических явлений и
процессов на основе полученных теоретических выводов и доказательств;

- характеризовать системную связь между основополагающими научными понятиями: пространство, время, движение;

- выдвигать гипотезы на основе знания основополагающих физических закономерностей и законов;

- самостоятельно планировать и проводить физические эксперименты;

- решать практико-ориентированные, качественные и расчетные физические задачи с выбором физической модели (материальная точка,
математический маятник), используя несколько физических законов или формул,, связывающих известные физические величины, в контексте
межпредметных связей;

- объяснять условия применения физических моделей при решении физических задач, находить адекватную предложенной задаче физическую
модель, разрешать проблему как на основе имеющихся знаний, так и при помощи методов оценки.
Динамика.
Учащиеся научатся:
- давать определения понятиям: инерциальная и неинерциальная система отсчёта, инертность,
сила тяжести, сила упругости, сила нормальной реакции опоры, сила натяжения. Вес тела, сила трения покоя, сила трения скольжения, сила трения
качения;
- формулировать законы Ньютона, принцип суперпозиции сил, закон всемирного тяготения, закон Гука;
- описывать опыт Кавендиша по измерению гравитационной постоянной, опыт по сохранению состояния покоя (опыт, подтверждающий закон
инерции), эксперимент по измерению трения скольжения;
- делать выводы о механизме возникновения силы упругости с помощью механической модели кристалла;
- прогнозировать влияние невесомости на поведение космонавтов при длительных космических полетах;
- применять полученные знания для решения задач.
Учащиеся получат возможность научиться:
- владеть приемами построения теоретических доказательств, а также прогнозирования особенностей протекания физических явлений и
процессов на основе полученных теоретических выводов и доказательств;

- характеризовать системную связь между основополагающими научными понятиями: пространство, время, движение;


4

- выдвигать гипотезы на основе знания основополагающих физических закономерностей и законов;
- самостоятельно планировать и проводить физические эксперименты;
- решать практико-ориентированные качественные и расчетные физические задачи, используя несколько физических законов или формул,
связывающих известные физические величины, в контексте межпредметных связей;

- объяснять условия применения физических моделей при решении физических задач, находить адекватную предложенной задаче физическую
модель, разрешать проблему как на основе имеющихся знаний, так и при помощи методов оценки.




Законы сохранения в механике.
Учащиеся научатся:
- давать определения понятиям: замкнутая система; реактивное движение; устойчивое, неустойчивое, безразличное равновесия; потенциальные силы,
абсолютно упругий и абсолютно неупругий удар; физическим величинам: механическая работа, мощность, энергия, потенциальная, кинетическая и
полная механическая энергия;
- формулировать законы сохранения импульса и энергии с учетом границ их применимости;
- делать выводы и умозаключения о преимуществах использования энергетического подхода при решении ряда задач динамики
Учащиеся получат возможность научиться:

- понимать и объяснять целостность физической теории, различать границы ее применимости и место в ряду других физических теорий;

- владеть приемами построения теоретических доказательств, а также прогнозирования особенностей протекания физических явлений и
процессов на основе полученных теоретических выводов и доказательств;

- характеризовать системную связь между основополагающими научными понятиями: пространство, время, движение, сила, энергия;

- выдвигать гипотезы на основе знания основополагающих физических закономерностей и законов;

- самостоятельно планировать и проводить физические эксперименты;

- характеризовать глобальные проблемы, стоящие перед человечеством: энергетические, сырьевые, экологические, – и роль физики в решении
этих проблем;

- решать практико-ориентированные качественные и расчетные физические задачи с выбором физической модели, используя несколько
физических законов или формул, связывающих известные физические величины, в контексте межпредметных связей;

- объяснять принципы работы и характеристики изученных машин, приборов и технических устройств;

- объяснять условия применения физических моделей при решении физических задач, находить адекватную предложенной задаче физическую
модель, разрешать проблему как на основе имеющихся знаний, так и при помощи методов оценки.
Молекулярно-кинетическая теория.
Учащиеся научатся:
5

- давать определения понятиям: микроскопические и макроскопические параметры; стационарное равновесное состояние газа. Температура газа,
абсолютный ноль температуры, изопроцесс; изотермический, изобарный и изохорный процессы;
- воспроизводить основное уравнение молекулярно-кинетической теории, закон Дальтона, уравнение Клапейрона-Менделеева, закон Гей-Люссака,
закон Шарля.
- формулировать условия идеального газа, описывать явления ионизации;
- использовать статистический подход для описания поведения совокупности большого числа частиц, включающий введение микроскопических и
макроскопических параметров;
- описывать демонстрационные эксперименты, позволяющие устанавливать для газа взаимосвязь между его давлением, объемом, массой и
температурой;
- объяснять газовые законы на основе молекулярно-кинетической теории.
- применять полученные знания для объяснения явлений, наблюдаемых в природе и в быту
Учащиеся получат возможность научиться:

- понимать и объяснять целостность физической теории, различать границы ее применимости и место в ряду других физических теорий;

- владеть приемами построения теоретических доказательств, а также прогнозирования особенностей протекания физических явлений и
процессов на основе полученных теоретических выводов и доказательств;

- характеризовать системную связь между основополагающими научными понятиями: пространство, время, движение, сила, энергия;

- выдвигать гипотезы на основе знания основополагающих физических закономерностей и законов;

- самостоятельно планировать и проводить физические эксперименты;

- характеризовать глобальные проблемы, стоящие перед человечеством: энергетические, сырьевые, экологические, – и роль физики в решении
этих проблем;

- решать практически-ориентированные, качественные и расчетные физические задачи с выбором физической модели, используя несколько
физических законов или формул, связывающих известные физические величины;

- объяснять принципы работы и характеристики изученных машин, приборов и технических устройств;
- объяснять условия применения физических моделей при решении физических задач, находить адекватную предложенной задаче физическую модель,
разрешать проблему как на основе имеющихся знаний, так и при помощи методов оценки
Основы термодинамики.
Учащиеся научатся:
- давать определения понятиям: теплообмен, теплоизолированная система, тепловой двигатель, замкнутый цикл, необратимый процесс, физических
величин: внутренняя энергия, количество теплоты, коэффициент полезного действия теплового двигателя, молекула, атом, «реальный газ»,
насыщенный пар;
6

- понимать смысл величин: относительная влажность, парциальное давление;
- называть основные положения и основную физическую модель молекулярно-кинетической теории строения вещества;
- классифицировать агрегатные состояния вещества;
- характеризовать изменение структуры агрегатных состояний вещества при фазовых переходах
- формулировать первый и второй законы термодинамики;
- объяснять особенность температуры как параметра состояния системы;
- описывать опыты, иллюстрирующие изменение внутренней энергии при совершении работы;
- делать выводы о том, что явление диффузии является необратимым процессом;
- применять приобретенные знания по теории тепловых двигателей для рационального природопользования и охраны окружающей среды
Учащиеся получат возможность научиться:

- выдвигать гипотезы на основе знания основополагающих физических закономерностей и законов;

- самостоятельно планировать и проводить физические эксперименты;

- характеризовать глобальные проблемы, стоящие перед человечеством: энергетические, сырьевые, экологические, – и роль физики в решении
этих проблем;

- решать практико-ориентированные качественные и расчетные физические задачи с выбором физической модели, используя несколько
физических законов или формул, связывающих известные физические величины, в контексте межпредметных связей;
- объяснять принципы работы и характеристики изученных машин, приборов и технических устройств
Электростатика.
Учащиеся научатся:
- давать определения понятиям: точечный заряд, электризация тел;
электрически изолированная система тел, электрическое поле, линии напряженности электрического поля, свободные и связанные заряды, поляризация
диэлектрика; физических величин: электрический заряд, напряженность электрического поля, относительная диэлектрическая проницаемость среды;
- формулировать закон сохранения электрического заряда, закон Кулона, границы их применимости;
- описывать демонстрационные эксперименты по электризации тел и объяснять их результаты; описывать эксперимент по измерению электроемкости
конденсатора;
- применять полученные знания для безопасного использования бытовых приборов и технических устройств
Учащиеся получат возможность научиться:

- понимать и объяснять целостность физической теории, различать границы ее применимости и место в ряду других физических теорий;

- владеть приемами построения теоретических доказательств, а также прогнозирования особенностей протекания физических явлений и
процессов на основе полученных теоретических выводов и доказательств;
7

- решать практико-ориентированные качественные и расчетные физические задачи с выбором физической модели, используя несколько физических
законов или формул, связывающих известные физические величины, в контексте межпредметных связей
Законы постоянного электрического тока.
Учащиеся научатся:
- давать определения понятиям: электрический ток, постоянный электрический ток, источник тока, сторонние силы, сверхпроводимость, дырка,
последовательное и параллельное соединение проводников; физическим величинам: сила тока, ЭДС, сопротивление проводника, мощность
электрического тока;
- объяснять условия существования электрического тока;
- описывать демонстрационный опыт на последовательное и параллельное соединение проводников, тепловое действие электрического тока, передачу
мощности от источника к потребителю; самостоятельно проведенный эксперимент по измерению силы тока и напряжения с помощью амперметра и
вольтметра;
- использовать законы Ома для однородного проводника и замкнутой цепи, закон Джоуля-Ленца для расчета электрических цепей.
Учащиеся получат возможность научиться:

- понимать и объяснять целостность физической теории, различать границы ее применимости и место в ряду других физических теорий;

- владеть приемами построения теоретических доказательств, а также прогнозирования особенностей протекания физических явлений и
процессов на основе полученных теоретических выводов и доказательств;

- выдвигать гипотезы на основе знания основополагающих физических закономерностей и законов;

- самостоятельно планировать и проводить физические эксперименты;

- решать практико-ориентированные качественные и расчетные физические задачи с выбором физической модели, используя несколько
физических законов или формул, связывающих известные физические величины, в контексте межпредметных связей;
- объяснять принципы работы и характеристики изученных машин, приборов и технических устройств

Электрический ток в различных средах.
Учащиеся научатся
- понимать основные положения электронной теории проводимости металлов, как зависит сопротивление металлического проводника от температуры
- объяснять условия существования электрического тока в металлах, полупроводниках, жидкостях и газах;
- называть основные носители зарядов в металлах, жидкостях, полупроводниках, газах и условия при которых ток возникает;
8

- формулировать закон Фарадея;
- применять полученные знания для объяснения явлений, наблюдаемых в природе и в быту
Учащиеся получат возможность научиться:

- владеть приемами построения теоретических доказательств, а также прогнозирования особенностей протекания физических явлений и
процессов на основе полученных теоретических выводов и доказательств;
- решать практико-ориентированные качественные и расчетные физические задачи с выбором физической модели, используя несколько физических
законов или формул, связывающих известные физические величины, в контексте межпредметных связей.
Содержание учебного предмета
Раздел 1. Механика (26 часов)
Системы отсчета. Скалярные и векторные физические величины. Механическое движение и его виды. Относительность механического
движения. Мгновенная скорость. Ускорение. Равноускоренное движение. Движение по окружности с постоянной по модулю скоростью. Принцип
относительности Галилея.
Масса и сила. Законы динамики. Способы измерения сил. Инерциальные системы отсчета. Закон всемирного тяготения.
Закон сохранения импульса. Кинетическая энергия и работа. Потенциальная энергия тела в гравитационном поле. Потенциальная эне ргия
упруго деформированного тела. Закон сохранения механической энергии.
Кинематика (8 часов)
Механическое движение. Материальная точка. Относительность механического движения. Система отсчета. Координаты. Радиус -вектор.
Вектор перемещения. Скорость. Ускорение. Прямолинейное движение с постоянным ускорением. Свободное падение тел. Движение тела по
окружности. Угловая скорость. Центростремительное ускорение.
Контрольная работа - 1
Динамика (9 часов)
Основное утверждение механики. Первый закон Ньютона. Инерциальные системы отсчета. Сила. Связь между силой и ускорением. Второй
закон Ньютона. Масса. Третий закон Ньютона. Принцип относительности Галилея.
Силы в природе. Сила тяготения. Закон всемирного тяготения. Первая космическая скорость. Сила тяжести и вес. Невесомость. Сила упругости.
Закон Гука. Силы трения.
Законы сохранения в механике. Импульс. Закон сохранения импульса. Реактивное движение. Работа силы. Кинетическая энергия.
Потенциальная энергия. Закон сохранения механической энергии.
Контрольная работа – 1
Лабораторная работа - 1
9

Законы сохранения в механике (9 часов)
Демонстрации:
Зависимость траектории от выбора отсчета.
Падение тел в воздухе и в вакууме.
Явление инерции.
Измерение сил.
Сложение сил.
Зависимость силы упругости от деформации.
Реактивное движение.
Переход потенциальной энергии в кинетическую и обратно.
Контрольная работа – 1
Лабораторная работа - 1
Раздел 2. Молекулярная физика. Термодинамика (22 часа)
Молекулярно - кинетическая теория строения вещества и ее экспериментальные основания. Абсолютная температура. Уравнение состояния
идеального газа.
Связь средней кинетической энергии теплового движения молекул с абсолютной температурой. Строение жидкостей и твердых тел.
Основы молекулярно-кинетической теории (13 часов)
Размеры и масса молекул. Количество вещества. Моль. Постоянная Авогадро. Броуновское движение. Силы взаимодействия молекул.
Строение газообразных, жидких и твердых тел. Тепловое движение молекул. Основное уравнение молекулярно-кинетической теории газа.
Температура. Энергия теплового движения молекул. Тепловое равновесие. Определение температур ы. Абсолютная температура. Температура —
мера средней кинетической энергии молекул. Измерение скоростей движения молекул газа.
Контрольная работа – 1
Лабораторная работа - 1
Основы термодинамики (9 часов)
Внутренняя энергия. Работа в термодинамике. Количество теплоты. Теплоемкость. Первый закон термодинамики. Изопроцессы. Второй закон
термодинамики. Тепловые двигатели. КПД двигателей. Жидкие и твердые тела. Испарение и кипение.
Демонстрации:
Механическая модель броуновского движения.
Изменение давления газа с изменением температуры при постоянном объеме.
Изменение объема газа с изменением температуры при постоянном давлении.
Изменение объема газа с изменением давления при постоянной температуре.
Устройство гигрометра и психрометра.
10

Кристаллические и аморфные тела.
Модели тепловых двигателей.
Контрольная работа – 1
Раздел 3. Основы электродинамики (20 часов)
Кулона. Электрическое поле. Разность потенциалов. Источники постоянного тока. Электродвижущая сила. Закон Ома для полной
электрической цепи. Электрический ток в металлах, электролитах, газах и вакууме. Полупроводники.
Электростатика (9 часов)
Электрический заряд и элементарные частицы. Закон сохранения электрического заряда. Закон Кулона. Электрическое поле. Напряже нность
электрического поля. Принцип суперпозиции полей. Проводники в электростатическом поле. Диэлектрики в электрическом поле. Поляризация
диэлектриков. Потенциальность электростатического поля. Потенциал и разность потенциалов. Электроемкость. Конденсаторы. Энерг ия
электрического поля конденсатора.
Контрольная работа – 1
Законы постоянного тока (11 часов)
Сила тока. Закон Ома для участка цепи. Сопротивление. Электрические цепи. Последовательное и параллельное соединения проводников.
Работа и мощность тока. Электродвижущая сила. Закон Ома для полной цепи.
Лабораторные работы - 2
Контрольная работа – 1

11

Тематический план
№
п/п
1.
1.1
1.2
1.3
2.
2.1
2.2
3.
3.1
3.2

Наименование разделов и тем
Механика
Кинематика
Динамика
Законы сохранения в механике
Молекулярная физика. Термодинамика
Основы молекулярно-кинетической теории
Основы термодинамики
Основы электродинамики
Электростатика
Законы постоянного тока
Итого:

12

Учебные Контрольные Практическая
часы
работы
часть
26
8
1
9
1
1
9
1
1
22
13
1
1
9
1
20
9
1
11
1
2
68
7
5


Наверх
На сайте используются файлы cookie. Продолжая использование сайта, вы соглашаетесь на обработку своих персональных данных. Подробности об обработке ваших данных — в политике конфиденциальности.

Функционал «Мастер заполнения» недоступен с мобильных устройств.
Пожалуйста, воспользуйтесь персональным компьютером для редактирования информации в «Мастере заполнения».